Manipulation Robustness of Collaborative Filtering Systems
نویسندگان
چکیده
A collaborative filtering system recommends to users products that similar users like. Collaborative filtering systems influence purchase decisions, and hence have become targets of manipulation by unscrupulous vendors. We provide theoretical and empirical results demonstrating that while common nearest neighbor algorithms, which are widely used in commercial systems, can be highly susceptible to manipulation, two classes of collaborative filtering algorithms which we refer to as linear and asymptotically linear are relatively robust. These results provide guidance for the design of future collaborative filtering systems.
منابع مشابه
Manipulation Robustness of Collaborative Filtering
A collaborative filtering system recommends to users products that similar users like. Collaborative filtering systems influence purchase decisions, and hence have become targets of manipulation by unscrupulous vendors. We demonstrate that while nearest neighbor algorithms, which are widely used in commercial systems, are highly susceptible to manipulation, two classes of collaborative filterin...
متن کاملیک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملIntelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering
During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...
متن کاملA NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/0903.0064 شماره
صفحات -
تاریخ انتشار 2009